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INTRODUCTION



SWISS Al CENTER

e Five schools from the HES-SO (HEIG-VD, HEIA-FR, HE-Arc,
HEVS and HEPIA)

e Project called Centre Suisse d’Intelligence Artificiel a
destination des PMEs (CSIA-PME), also known as the
Swiss Al Center.

e The center’s mission is to accelerate the adoption of
artificial intelligence in the digital transition of Swiss
SMEs.



FEATURES



e Centralize ML services

e Unify ML services
specifications with a HTTP
REST API

e Orchestrate multiple ML
services through pipelines
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Generate art images (album covers)
from lyrics and sentiments.
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Returns the average shade of an
image.
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Recognizes a digit in an image using
mnist trained model.
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Anomaly detection of a time series with
an autoencoder.
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This service benchmarks a dataset with
various models and outputs the resul...
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Document Vectorizer @

This service uses langchain to vectorize
documents into a FAISS vectorstore.
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Beautiful frontend to
visualize services and
pipelines

Extensive documentation
available

Best practices regarding
software development
(code reviews, CI/CD)
Open source

= swiss center
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INFRASTRUCTURE



Deployment

kubernetes«

@ PostgreSQL
M

O FastAPI Services < — ¥
*
[ ITNI o -
O FastAPI _
_ Engine
— SQLMOdEI d

@ React Webapp

L R | W

GitHub Actions CI(CD

%

Swiss Al Center -

2022-2024 - AGPL 3.0



SERVICE SPECIFICATION



Can be in any language
that can implement a
REST API

Must have the required
routes to be “engine”
compliant

The /compute route
must accept the “Task”
model

Can have its own routes
(for specific purposes)

Service

/status Get service availability

Tasks

/tasks/{task_id}/status Gettaskstatus

/compute Compute task

s - Service c-Client ‘ s3 - Storage

file_keys = for file in data: upload(file)

return(200, file_key) J ‘

POST(s.url/process, callback_url: str, service_task: ServiceTask)

callback_url is the url where the service should send the response

service_task should match the model

return(200, Task added to the queue)

data = for key in service_task.task.data_in: get_file(sefvice_task.s3_infos, key)

return(200, stream) J ‘

result = process(data)

data_out = for res in result: upload_file(service_task.s3_infos, data_out)

return(200, key)

task_update = jsonable_encoder(TaskUpdate({status: finished, task.data_out: data_out}))

PATCH(callback_url, task_update)

return(200, OK) ‘ ‘

GET(task_update.data_out)

return(200, stream) J ‘

s - Service c - Client ‘ s3 - Storage
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PIPELINE SPECIFICATION



A JSON file containing base

information:

Name

Slug
Summary
Description
Input/Output
Tags

"name": "Face Blur",
"slug": "face-blur",
"summary": "Blur the faces in an image",

"description": "Use Face Detection service to locate the faces in the image and send the

bounding boxes to the Image Blur service to get the final result",
"data_in_fields": [

{
"name": 'image",
"type": [
""image/jpeg",
""image/png"
1
H
I,
"data_out_fields": [
{
“"name": "result",
"type": [
""image/jpeg",
"image/png"
|
}
]f
"tags": [
{
"name": "Image Recognition",
"acronym": "IR"
b
{
"name": "Image Processing",
"acronym": "IP"
H
]r
"steps": [
{
"identifier": "face-detection",
"needs": [],
"inputs'": ["pipeline.image"],
"service_slug": "face-detection"
}r
{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"
}
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And a list of “Steps”
representing the sequel of
services to run with the
following data:

e ldentifier (used in the
“needs”, “conditions” and
“inputs” values)

e Needs (used to wait until all
the services in the array
finished their task)

"name": "Face Blur",

"slug": "face-blur",

"summary": "Blur the faces in an image",

"description": "Use Face Detection service to locate the faces in the image and send the
bounding boxes to the Image Blur service to get the final result",

"data_in_fields": [

{
"name": "image",
"type": [
""image/jpeg",
""image/png"
1
H
I,
"data_out_fields": [
{
"name": "result",
"type": [
""image/jpeg",
"image/png"
|
}
]f
"tags": [
{
"name": "Image Recognition",
"acronym": "IR"
b
{
"name": "Image Processing",
"acronym": "IP"
H
]r
"steps": [
{
"identifier": "face-detection",
"needs": [],
"inputs'": ["pipeline.image"],
"service_slug": "face-detection"
}r
{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"



"name": "Face Blur",
"slug": "face-blur",
"summary": "Blur the faces in an image",
"description": "Use Face Detection service to locate the faces in the image and send the
bounding boxes to the Image Blur service to get the final result",
"data_in_fields": [
{
"name": "image",
"type": [

e Condition ([optional] if . |

""image/png"
I,

"data_out_fields": [

this specific step should .

"type": [
""image/jpeg",

match a condition e

]f

before being run)

"name": "Image Recognition",

e Inputs (which data S

should be put in the

"steps":
{

entry of the service) T

"inputs'": ["pipeline.image"],

"service_slug": "face-detection"

}r

{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"
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NEXT STEPS



Pipeline parallelization
Toy datasets

Functional tests on service
declaration

And many more...
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ANY QUESTIONS? &



USEFUL LINKS

Official website
Documentation
Frontend demo
Backend demo

Guide to MLOps
Chatbot

GitHub
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