Core Engine

Website - GitHub - Documentation - Guide
Swiss Al Center contributors

This work is licensed under the AGPL 3.0 license.

SWiSS ¢ center

https://swiss-ai-center.ch/
https://github.com/swiss-ai-center/core-engine
https://docs.swiss-ai-center.ch/core-engine/
https://mlops.swiss-ai-center.ch/
https://github.com/swiss-ai-center/core-engine/blob/main/LICENSE

INTRODUCTION

SWISS Al CENTER

e Five schools from the HES-SO (HEIG-VD, HEIA-FR, HE-Arc,
HEVS and HEPIA)

e Project called Centre Suisse d’Intelligence Artificiel a
destination des PMEs (CSIA-PME), also known as the
Swiss Al Center.

e The center’s mission is to accelerate the adoption of
artificial intelligence in the digital transition of Swiss
SMEs.

FEATURES

e Centralize ML services

e Unify ML services
specifications with a HTTP
REST API

e Orchestrate multiple ML
services through pipelines

swiss center

.

Services

Per page
30

Album Cover Art
Generation

Generate art images (album covers)
from lyrics and sentiments.

VIEW

Average Shade
(e)

Returns the average shade of an
image.

VIEW

Digit Recognition

(")

Recognizes a digit in an image using
mnist trained model.

-

Autoencoder Anomaly @
Detection

(a0]

Anomaly detection of a time series with
an autoencoder.

VIEW

Classification Benchmark
(or]

This service benchmarks a dataset with
various models and outputs the resul...

VIEW

Document Vectorizer @

This service uses langchain to vectorize
documents into a FAISS vectorstore.

)

5

Beautiful frontend to
visualize services and
pipelines

Extensive documentation
available

Best practices regarding
software development
(code reviews, CI/CD)
Open source

= swiss center

Services

Per page

30

Album Cover Art
Generation

Generate art images (album covers)
from lyrics and sentiments.

VIEW

Average Shade
(e)

Returns the average shade of an
image.

VIEW

Digit Recognition

(")

Recognizes a digit in an image using
mnist trained model.

-

Autoencoder Anomaly @
Detection

Anomaly detection of a time series with
an autoencoder.

VIEW

Classification Benchmark
(or]

This service benchmarks a dataset with
various models and outputs the resul...

VIEW

Document Vectorizer @

This service uses langchain to vectorize
documents into a FAISS vectorstore.

)

6

INFRASTRUCTURE

Deployment

kubernetes«

@ PostgreSQL
M

O FastAPI Services < — ¥
*
[ITNI o -
O FastAPI _
_ Engine
— SQLMOdEI d

@ React Webapp

L R | W

GitHub Actions CI(CD

%

Swiss Al Center -

2022-2024 - AGPL 3.0

SERVICE SPECIFICATION

Can be in any language
that can implement a
REST API

Must have the required
routes to be “engine”
compliant

The /compute route
must accept the “Task”
model

Can have its own routes
(for specific purposes)

Service

/status Get service availability

Tasks

/tasks/{task_id}/status Gettaskstatus

/compute Compute task

s - Service c-Client ‘ s3 - Storage

file_keys = for file in data: upload(file)

return(200, file_key) J ‘

POST(s.url/process, callback_url: str, service_task: ServiceTask)

callback_url is the url where the service should send the response

service_task should match the model

return(200, Task added to the queue)

data = for key in service_task.task.data_in: get_file(sefvice_task.s3_infos, key)

return(200, stream) J ‘

result = process(data)

data_out = for res in result: upload_file(service_task.s3_infos, data_out)

return(200, key)

task_update = jsonable_encoder(TaskUpdate({status: finished, task.data_out: data_out}))

PATCH(callback_url, task_update)

return(200, OK) ‘ ‘

GET(task_update.data_out)

return(200, stream) J ‘

s - Service c - Client ‘ s3 - Storage

10

PIPELINE SPECIFICATION

A JSON file containing base

information:

Name

Slug
Summary
Description
Input/Output
Tags

"name": "Face Blur",
"slug": "face-blur",
"summary": "Blur the faces in an image",

"description": "Use Face Detection service to locate the faces in the image and send the

bounding boxes to the Image Blur service to get the final result",
"data_in_fields": [

{
"name": 'image",
"type": [
""image/jpeg",
""image/png"
1
H
I,
"data_out_fields": [
{
“"name": "result",
"type": [
""image/jpeg",
"image/png"
|
}
]f
"tags": [
{
"name": "Image Recognition",
"acronym": "IR"
b
{
"name": "Image Processing",
"acronym": "IP"
H
]r
"steps": [
{
"identifier": "face-detection",
"needs": [],
"inputs'": ["pipeline.image"],
"service_slug": "face-detection"
}r
{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"
}

12

And a list of “Steps”
representing the sequel of
services to run with the
following data:

e ldentifier (used in the
“needs”, “conditions” and
“inputs” values)

e Needs (used to wait until all
the services in the array
finished their task)

"name": "Face Blur",

"slug": "face-blur",

"summary": "Blur the faces in an image",

"description": "Use Face Detection service to locate the faces in the image and send the
bounding boxes to the Image Blur service to get the final result",

"data_in_fields": [

{
"name": "image",
"type": [
""image/jpeg",
""image/png"
1
H
I,
"data_out_fields": [
{
"name": "result",
"type": [
""image/jpeg",
"image/png"
|
}
]f
"tags": [
{
"name": "Image Recognition",
"acronym": "IR"
b
{
"name": "Image Processing",
"acronym": "IP"
H
]r
"steps": [
{
"identifier": "face-detection",
"needs": [],
"inputs'": ["pipeline.image"],
"service_slug": "face-detection"
}r
{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"

"name": "Face Blur",
"slug": "face-blur",
"summary": "Blur the faces in an image",
"description": "Use Face Detection service to locate the faces in the image and send the
bounding boxes to the Image Blur service to get the final result",
"data_in_fields": [
{
"name": "image",
"type": [

e Condition ([optional] if . |

""image/png"
I,

"data_out_fields": [

this specific step should .

"type": [
""image/jpeg",

match a condition e

]f

before being run)

"name": "Image Recognition",

e Inputs (which data S

should be put in the

"steps":
{

entry of the service) T

"inputs'": ["pipeline.image"],

"service_slug": "face-detection"

}r

{
"identifier": "image-blur",
"needs": ["face-detection"],
"condition": "len(face-detection.result['areas']) > 0",
"inputs": ["pipeline.image", "face-detection.result"],
"service_slug": "image-blur"

pipeline-entry image-blur
npul narme Dala ype
image image/jpeg £ imageipng & < _e-— < image
-T image/png imagefjpeg pipeling-exit
o \ areas 05__ —1
| "
1 b applicationfjson
\ '\
|

°

len{face-detection.resulfareas i =0 €
'II =
II
!

face-detection
\
L1

., image :_\J
image/png imagejpeg

Swiss Al Center - 2022-2024 - AGPL 3.0

imagafpng

imagafpeag

Haact Flow

15

NEXT STEPS

Pipeline parallelization
Toy datasets

Functional tests on service
declaration

And many more...

Swiss Al Center - 2022-2024 - AGPL 3.0

17

ANY QUESTIONS? &

USEFUL LINKS

Official website
Documentation
Frontend demo
Backend demo

Guide to MLOps
Chatbot

GitHub

Swiss Al Center - 2022-2024 - AGPL 3.0

19

https://swiss-ai-center.ch/
https://docs.swiss-ai-center.ch/
https://app.swiss-ai-center.ch/
https://core-engine.swiss-ai-center.ch/
https://mlops.swiss-ai-center.ch/
https://chatbot.swiss-ai-center.ch/
https://github.com/swiss-ai-center/

